Forecasting Energy Consumption Using Fuzzy Transform and Local Linear Neuro Fuzzy Models
نویسندگان
چکیده
This paper proposes a hybrid approach based on local linear neuro fuzzy (LLNF) model and fuzzy transform (F-transform), termed FT-LLNF, for prediction of energy consumption. LLNF models are powerful in modelling and forecasting highly nonlinear and complex time series. Starting from an optimal linear least square model, they add nonlinear neurons to the initial model as long as the model's accuracy is improved. Trained by local linear model tree learning (LOLIMOT) algorithm, the LLNF models provide maximum generalizability as well as the outstanding performance. Besides, the recently introduced technique of fuzzy transform (F-transform) is employed as a time series pre-processing method. The technique of F-transform, established based on the concept of fuzzy partitions, eliminates noisy variations of the original time series and results in a well-behaved series which can be predicted with higher accuracy. The proposed hybrid method of FT-LLNF is applied to prediction of energy consumption in the United States and Canada. The prediction results and comparison to optimized multi-layer perceptron (MLP) models and the LLNF itself, revealed the promising performance of the proposed approach for energy consumption prediction and its potential usage for real world applications.
منابع مشابه
Forecasting Energy Price and Consumption for Iranian Industrial Sectors Using ANN and ANFIS
Forecasting energy price and consumption is essential in making effective managerial decisions and plans. While there are many sophisticated mathematical methods developed so far to forecast, some nature-based intelligent algorithms with desired characteristics have been developed recently. The main objective of this research is short term forecasting of energy price and consumption in Iranian ...
متن کاملMid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models
This paper proposes a structure for long-term energy demand forecasting. The proposed hybrid approach, called HPLLNF, uses the local linear neuro-fuzzy (LLNF) model as the forecaster and utilizes the Hodrick–Prescott (HP) filter for extraction of the trend and cyclic components of the energy demand series. Besides, the sophisticated technique of mutual information (MI) is employed to select the...
متن کاملEvaluation of the Neuro-Fuzzy and Hybrid Wavelet-Neural Models Efficiency in River Flow Forecasting (Case Study: Mohmmad Abad Watershed)
One of the most important issues in watersheds management is rainfall-runoff hydrological process forecasting. Using new models in this field can contribute to proper management and planning. In addition, river flow forecasting, especially in flood conditions, will allow authorities to reduce the risk of flood damage. Considering the importance of river flow forecasting in water resources ma...
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملModeling Lake Urmia Water-Level Changes using Local Linear Neuro-Fuzzy Method
According to the water resources and climate change and challenges of Urmia Lake basin, which is the discharge and final destination of North West Rivers, a model was presented. Due to climate change and water resources in river basin such as rainfall, climate change in basin that has direct impact on evaporation over water catchment areas and lake water, this model can be provided. In addition...
متن کامل